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Objective: This review provides an update on sport-related
concussion (SRC) in ice hockey and makes a case for changes in
clinical concussion evaluation. Standard practice should require that
concussions be objectively diagnosed and provide quantitative
measures of the concussion injury that will serve as a platform for
future evidence-based treatment.

Methods: The literature was surveyed to address several
concussion-related topics: research in ice hockey-related head
trauma, current subjective diagnosis, promising components of an
objective diagnosis, and current and potential treatments.

Main Results: Sport-related head trauma has marked physiologic,
pathologic, and psychological consequences for athletes. Although
animal models have been used to simulate head trauma for
pharmacologic testing, the current diagnosis and subsequent treat-
ment in athletes still rely on an athlete’s motivation to report or deny
symptoms. Bias-free, objective diagnostic measures are needed to
guide quantification of concussion severity and assessment of treat-
ment effects. Most of the knowledge and management guidelines of
concussion in ice hockey are generalizable to other contact sports.

Conclusions: There is a need for an objective diagnosis of SRC
that will quantify severity, establish a prognosis, and provide
effective evidence-based treatment. Potential methods to improve
concussion diagnosis by health care providers include a standard-
ized concussion survey, the King–Devick test, a quantified elec-

troencephalogram, and blood analysis for brain cell-specific
biomarkers.
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INTRODUCTION
In the past decade, there has been growing public

awareness and concern regarding the risk and consequences of
concussion in contact sports.1 However, there has not been
a corresponding increase in the ability to objectively diagnose
and effectively treat concussion. At the 2010 Ice Hockey
Summit I: Action on Concussion, prioritized action items
included improved recognition, diagnosis, and return-to-play
protocols in addition to rule changes and rule enforcement
aimed at reducing head contact. The main priorities of the
2013 Ice Hockey Summit II: Action on Concussion were
elimination of all hits to the head and fighting. Data presented
at Summit II showed that the “uppercut” (knock out) punch has
much greater forces than other on-ice hockey-related infrac-
tions.2 Unfortunately, targeting the head, fighting in games,
and locker room boxing are all dangerous exposures that con-
tinue in hockey. The fighting-related data combined with law-
suits filed by players against the National Hockey League
(NHL) may eventually lead to the elimination of fighting in
ice hockey. Body checking,3–5 particularly when accompanied
by “checking from behind,” boarding, and head hits are also
dangerous, but can be addressed by rule changes6,7 as has
occurred in PeeWee hockey in both Canada and the United
States and high school hockey in the United States.

BACKGROUND
The potential link between head trauma and long-term

neurologic deficits has increased public health concerns regard-
ing sport-related concussion (SRC).8–11 High-impact head
trauma occurs in all contact sports, such as hockey, football,
and soccer, but strategies to reduce incidental and eliminate
intentional head impact are essential for player safety.12–15

Hockey is played at high speeds on hard, slippery ice, sur-
rounded by boards and Plexiglas. Consequently, SRC frequently
results from body checks, accidental collisions and deliberate
infractions.3–5,16–26 In hockey, the incidence of concussion and
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other injuries increases as players physically mature, because of
increased size, speed, and their competitive aggression.12,14,27,28

Video reconstruction is a bioengineering procedure that
contributes to our understanding of head trauma and impact on
the brain. Video reconstruction uses 2 orthogonally positioned
cameras to capture head impact events and to calculate both
impact speed and head accelerations.29–31 This process has
established the relationship between the magnitude of head
acceleration and the severity of head injury.30 Video recon-
struction output is used in finite element models (FEM). The
FEM output provides acceleration magnitude, strain rates, and
brain tissue orientation at the time of injury.29,31–37 These
impact characteristics can be used in the translational laboratory
and animal research to evaluate responses to simulated head
impacts and potential therapies.

Wearable accelerometers and instrumented helmets
have also been developed to measure and track head impacts
and their relation to SRC. The Head Impact Telemetry
System (HITS) has been used extensively to record im-
pacts.1,2,22,26,38–41 The magnitude, frequency of head hits, and
linear and rotational accelerations have been studied in both
male and female hockey players, at youth, high school, Junior
A and college age levels of participation.1,2,17,22,26,38,40–45

A study of Bantam players (ages 13–14 years) recorded
2753 impact events over 10 g with an average linear acceleration
of 15.8 g (SD 13.8). Five players experienced .180 impacts
each, with some exceeding 98 g.39 In another study of high
school, Junior A, and collegiate (men’s and women’s) teams,
over 100 000 head impacts were measured with player-to-player
contact accounting for 50% of the impacts. Sport-related con-
cussion was diagnosed most often on days with higher fre-
quency and magnitude of recorded head impacts.43 Head
impact exposure, which includes parameters of frequency, mag-
nitude, and head impact location,2 was correlated with both
concussion signs and symptoms and abnormalities on functional
magnetic resonance imaging and diffusion tension imaging.46–48

High linear and rotational accelerations have been
simulated in the laboratory using an HITS hockey helmet
and a Hybrid III head–neck complex to study impact charac-
teristic correlations during 3 common infractions: static cross-
checking, dynamic cross-checking, and slashing to the head–
neck complex.49 Mean linear accelerations ranged 26.5 g
from a crosscheck to 138 g from a slash, and mean rotational
accelerations ranged from 2260 rads/s2 during a dynamic
cross check, to 14 100 rads/s2 during a slash.49

A 2-season study of Junior A players (N = 28) wearing
HITS17,29,45 helmets at home games looked at HITS acceler-
ations, SRC diagnosed in season (6 in 2011–2012 and 4 in
2012–2013), individual exposure time, penalties, and video
data. These players reported between 0 and 6 concussions
each before enrolling in the study. During the 2011 to 2012
season, 5201 impacts over 10 g were recorded and 2780 in
2012 to 2013. The number of impacts ranged between 103
and 186 per player per season and between 6.8 and 7.06 per
player per game per season. There were 47 fights in the 2011
to 2012 season and 34 in the 2012 to 2013 season, based on
the penalties recorded for fighting.

Highest single linear and rotational accelerations per
player were graphed separately on 80% probability of the

concussion scale of Zhang,50 and diagnosed concussions
were marked with an X (Figure 1).51 All but one of the
concussed players recorded linear and rotational accelera-
tions above an 80% probability of concussion. However, 10
players with accelerations over the 80% probability line
were not diagnosed with a concussion; was this due to
impact measurement error? To answer this question, drop
testing was performed with a Hybrid III Head Form fitted
with an HITS hockey helmet. Results showed a strong cor-
relation between accelerations recorded from the Hybrid III
and the HITS helmet, except for drops onto the ridged
vertex of the helmet. Assured by the strong correlations
that the head impacts were being accurately recorded, the
accuracy of the concussion diagnostic methods, including
the Sport Concussion Assessment Tool 3 (SCAT3), were
questioned.52–54 Other potential explanations for head hits
above the 80% concussion probability levels without a diag-
nosis of concussion include the lack of player motivation to
report head trauma, acquired resiliency to head hits, and
fear of reporting consequences such as missed playing time
or loss of a scholarship opportunity.

Despite technological advances that allow a quantitative
evaluation of head impact that measure accelerations during
games showing the magnitude and frequency of head impact
events in hockey, our ability to diagnose concussion at
rinkside or point of care has not advanced beyond the
currently available subjective clinical assessment tools.1,2

Subjective Concussion Diagnosis Process
The currently available “objective” diagnostic tools,

such as the SCAT3, are subject to players underreporting or
exaggeration of symptoms. The absence of an objective,
readily available and affordable quantitative measure of
brain function impairs our ability to accurately assess
SRC. Likewise, the inability to clinically measure the ini-
tial magnitude of neuronal injury and objectively monitor
brain recovery over time weakens informed decision mak-
ing for treatment, prognosis, and return to sport.1,2 The lack
of objective measures for diagnosis of concussion and
serial quantitative measures of recovery compromise the
identification and assessment of prospective therapies. Cur-
rently, no Food and Drug Administration (FDA)-approved
therapy is available for acute concussion, and treatment
options are limited to rest, time, and nonpharmacologic
rehabilitation strategies.

The SCAT3 has been recommended as an aid to the
diagnosis of concussion.54 This test battery queries concus-
sion history, 22 symptoms, orientation, memory, delayed
recall, and balance testing. All of the SCAT3 responses are
vulnerable to manipulation during baseline and postconcus-
sion testing, if players are motivated to avoid a concussion
diagnosis. Players who “cheat” the test often remain on the
field of play and are subject to the risk of subsequent head
trauma. Recognition, scholarships, professional contracts, or
starting positions are motivation to deny symptoms. A recent
review of the psychology of athletes with concussion high-
lights limitations of diagnosing concussions due to the sub-
jectivity of the evaluation.55
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Gaps in Current Concussion in the Hockey
Literature

Clinicians are challenged by the absence of reliable
objective measures to diagnose, quantify severity, and inform
the management of concussion. The clinical evaluation of
concussion resembles chest pain management in the 1950s.
Electrocardiograms were challenging to interpret and pro-
vided only a semiquantitative measure of cardiac injury,
serum biomarker assessments did not exist, and the sole
treatment was rest for several weeks with comfort care, often
including morphine and oxygen. A few decades later,
clinicians can expediently and accurately evaluate and treat
chest pain, track myocardial injury recovery, and return
patients to “normal” life in a matter of days. Although the
SCAT3 provides a structured assessment of the athlete’s after
head trauma event, more objective diagnostic protocols are
emerging, which will provide much needed objectivity to the
concussion evaluation.

Components of an Objective Diagnosis of
Concussions

Our hockey concussion research team is investigating
objective diagnostic measures that use a repeated measure
design, so the players serve as their own control. The team
selected 4 time points to use for measuring: (1) preseason

baseline, (2) after head trauma, (3) before return to sport, and
(4) after season testing.

Mayo Clinic Ice Hockey Concussion Survey
This demographic survey queries an athlete’s concus-

sion history and hockey profile (years in hockey, player posi-
tion, and on-ice playing style) before segueing into the
objective diagnostic measures using the King–Devick test,
the quantified electroencephalogram (QEEG), and neuro-
biomarker measurements.

King–Devick Test
The King–Devick (KD) test, a time-based measure of

saccades and other eye movements, detects concussion with
high levels of sensitivity (86%) and specificity (90%) at rink-
side or point of care.56 A preseason baseline is performed
with players wearing practice/competition eyewear. Exam-
iners record the time it takes to complete each of 3 trials
and the number of errors per trial.56 Recently, 141 youth
hockey players underwent KD testing before season, after
season, and immediately after suspected concussion.57 Test-
ing was also performed in a subgroup of nonconcussed ath-
letes immediately before and after games to determine the
impact of fatigue on KD scores. Twenty athletes sustained
a concussion, and all 20 had immediate postconcussion KD
testing times, which deviated more than 5 seconds from

FIGURE 1. The highest recorded sin-
gle linear (A) and rotational (B) ac-
celerations per player across 1 season
of data collection. Horizontal thresh-
olds indicate the probability of the
concussion scale of Zhang. X’s repre-
sent clinically diagnosed concussions
using the SCAT3. All except 1 con-
cussion are above the 80% probability
of concussion line.
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baseline (average 7.3 s) and all but 2 had worse postseason
scores (46.4 seconds vs 52.4 seconds, P , 0.05). In contrast,
51 nonconcussed players assessed before and after a game
revealed no significant time change as a result of fatigue. This
study indicated that the KD test accurately identified real-
time, symptomatic concussion in youth athletes. Players will
benefit from having provided preseason and postseason KD
testing, as sports medicine providers will have a real-time
objective evaluation at point of care to support the diagnosis
of concussion.

Quantified Electroencephalogram
During a QEEG evaluation, event-related potentials

(ERPs) reveal ongoing, covert neurologic processing deficits
not fully assessed by behavioral measures. Event-related
potentials are sensitive measures of neurofunctional deficits,
which are not influenced by either player motivation or by the
practice effects of repeated testing, a limitation of KD testing.
A QEEG was used to assess concussed athletes between 2010
and 2012 in a repeated measure design (baseline, immediately
after injury, 45 days after concussion, and before return to
play). Although most SRC symptoms and cognitive dysfunc-
tion resolved within the first week after injury, QEEG results
showed that postconcussion neurofunctional recovery, as
measured on the QEEG, lags behind clinical recovery.58–60

Authors used the NeuroCatch (NC; NeuroTech Lab,
Surrey, BC, Canada), a QEEG device, which identifies changes
in waveform amplitude and latency, after head trauma
compared with baseline. The NC requires 1 to 2 minutes to
set up and 5 minutes to record the brain waveforms The NC
allows comparison of the preseason baseline with a postinjury
recording, which may aid in making a concussion diagnosis
and guide the return-to-play decision.

Neurobiomarkers
To date, the neurobiomarker measurements of neuron-

specific enolase, S100B, and Tau have yielded equivocal
results for diagnosis and severity of head trauma in several
studies.61–65 Two novel neurobiomarker tools recently used in
hockey studies are metabolomics66–68 and aII-spectrin
N-terminal fragment (SNTF).69,70 These biomarkers show
promise of improved accuracy for diagnosis of SRC after
head trauma in hockey. The metabolomics involves analyzing
blood plasma to detect metabolite “footprints” indicative of
head trauma. Metabolomic profiles have distinguished mild
cognitive impairment from Alzheimer disease,67,68 and similar
profiles have differentiated concussed adolescent male hockey
players from nonconcussed players.66

The SNTF measurements detected axonal trauma after
head injury in Swedish professional hockey players.69

Although undetectable at baseline, SNTF rises after head
trauma and is used in a repeated measure design to provide
a clinical profile of readiness for return to play as SNTF levels
return to undetectable levels.

In future research, the goal is for these and other
objective diagnostic tests to confirm concussion diagnosis,
quantify severity, and contribute to the study of potential
concussion treatment. Although virtually no evidence-based
treatment for acute SRC is now available, evolving information

on an objective diagnosis of concussion will result in
a framework capable of assessing treatment efficacy. Objective
and accurate concussion diagnoses in hockey players and other
contact sport athletes are essential to allow for controlled,
randomized trials to evaluate effects.

Treatment with Promising Medication
Treatment with medications requires understanding of

the postconcussion neurometabolic cascade. This cascade is
characterized by increases in intracellular glutamate and
calcium, coincident with potassium exiting the intracellular
space into the extracellular fluid, a chemical process that
impedes phosphorylation of ATP necessary for brain energy
function. Consequently, the postconcussion acute cellular
energy demand exceeds the intracellular energy supply.71,72

As such, effective treatment of concussion at point of care
will likely require the ability of agents that expediently cross
the blood–brain barrier and promptly reduce the neuro-
metabolic energy crisis.

To date, evidence supporting pharmacologic concussion
treatment is symptom driven and equivocal in patients with
postconcussion syndrome.73 Symptom categories reviewed
were (1) somatic complaints, (2) sleep disturbance, (3) emo-
tional difficulties, and (4) cognitive difficulties. Although
administration of most medications is symptom driven, some
agents show promise in circumventing the cell energy crisis
that produces concussion symptom constellations.

In a military study performed in Iraq, a clinician
administered either N-acetyl cysteine (NAC) or a placebo to
combat soldiers after blast-related traumatic brain injury at
point of care. N-acetyl cysteine has a 40-year history of
clinical use in acetaminophen overdose without discernable
side effects. Study participants were randomized into either
NAC treatment (N = 41) or placebo group (N = 40), with the
NAC group showing significant symptom improvement.
N-acetyl cysteine has also shown neuroprotective benefits
and use in treating neurological disorders; however, it does
not easily cross the blood–brain barrier, which limits brain
cell bioavailability.74–76 An amide derivative of NAC, NAC
amide, has been synthesized that crosses the blood–brain
barrier efficiently resulting in increased brain cell bio-
availability. Animal model studies of N-acetylcysteine
amide (NACA) show significant benefit in rodent traumatic
brain injury (TBI), spinal cord injury, and focal penetrating
brain injury models with no side effects. A review of NACA
studies concluded that NACA may soon be available as
a treatment for SRC.77 There are also some animal data
supporting potential neuroprotective benefits from the use of
common fish oils, such as docosahexaenoic acid,78,79 but
additional research is needed to prove efficacy. It is hoped
that the reported neuroprotective benefits from these prom-
ising treatments will show the ability to prevent and alleviate
post-SRC symptoms in athletes to a level that will attain
FDA approval.

Promising Treatment Without Medication
Recent nonpharmacologic treatment has challenged the

use of complete physical and cognitive rest with prolonged
activity restrictions in concussed athletes. Although relative
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rest is useful in the acute concussion period, exercise at
a subsymptom threshold using the Balke treadmill protocol
has proven benefits in postconcussion syndrome.80–85 In addi-
tion to exercise, other interventions are often necessary
including oculomotor, cervical spine, and vestibular rehabil-
itation.86,87 Additional interventions to decrease the risk of
postconcussion musculoskeletal injuries may also be neces-
sary with some athletes.88

DISCUSSION
Considerable effort has been invested in developing

a comprehensive version of the SCAT3 that includes
a concussion history, extensive symptom assessment, severity
rating, orientation awareness, memory and delayed recall, and
a preliminary vestibular assessment; however, collectively,
these evaluations remain subjective. As illustrated by inves-
tigative reports,89 many committed athletes escape concus-
sion detection based on their motivation to remain in the
game. At all levels of participation, pressure on clinical pro-
viders from coaching staff, general managers, and players can
also impede the accuracy of the concussion diagnoses. As
objective diagnostic tools become available, the diagnosis
will be less vulnerable to subjective overlay of overly aggres-
sive athletes and assertive coaches.

Practical Guidelines for Clinicians
Medical personnel evaluating athletes who sustain

significant head impact should be aware that most currently
used diagnostic tests are imprecise, require athlete coopera-
tion, and are vulnerable to player and evaluator bias. The
SCAT3, despite being well studied and widely used, consists
of a series of subjective questions, or tests requiring player
cooperation, and thus, is susceptible to player deception.
Although psychometrics ensure validity, they do not neces-
sarily ensure objectivity. Clinicians should use tests with the
greatest objectivity, availability, and affordability.

This review provides sports medicine team physi-
cians and athletic trainers with action(s) that can be
integrated into their concussion assessment. The diagnos-
tics discussed in this article are most helpful at this time
when a baseline comparison test is available. Important
information for clinicians to know before objectively
diagnosing a hockey-related concussion includes risk
factors such as: (1) a history of previous concussions, (2)
head contact exposures along with the frequency to known
accelerations at over 80% probability, and (3) the on-ice
position of forward in ice hockey.

CONCLUSIONS
To advance the science of concussion, objective

measures to diagnose concussion and document the reso-
lution of brain-related changes must be developed. Varia-
tions from baseline in 3 objective measures—the KD test,
the QEEG, and neurobiomarkers—may confirm concussion
and measure of severity of the brain injury. These potential
objective measures will enable promising therapeutic op-
tions to be studied for efficacy in concussion management.

Using objective diagnostic methods is a critical step to
reduce the frequency and consequences of undiagnosed
concussion and inappropriate return to play.
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